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CHAPTER 11 
 

Collider Theory 
 
β Function 
 
The β function is also known as the amplitude function.  To understand the concept of the 
β function we must understand what is occurring as a particle traverses a FODO lattice.  
We all know that the real world does not follow ideal conditions.  Accelerators are no 
exception.  Magnets are not always constructed with perfect field configurations.  For 
example, as magnets are ramped the laminations begin to heat up and the size of the 
magnet will increase, albeit a small change in volume.  The field strength will change or 
an aberration in the field may become more apparent. 
 
Suppose a proton is injected onto its ideal orbit in a circular accelerator made up of only 
dipoles and say that one dipole magnet in the ring has a momentary imperfection that 
causes a deflection in the plane perpendicular to the magnetic field lines.  The resulting 
orbit would be another circle with the same radius but offset from the ideal orbit.  The 
particle will oscillate about the ideal orbit and be considered stable because it remains in 
the accelerator. 
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Figure 11.1  The left diagram shows the deflection of a particle in the horizontal plane.  The
right figure shows the effect if the deflection has components in both transverse planes. 
w consider a deflection from a magnet that has a component parallel to the magnetic 
ld lines.  The particles will begin to spiral out of the beam tube.  This, of course is an 
stable orbit. 

e alternating gradient synchrotron was developed to provide strong focusing in both 
nsverse planes.  In the Tevatron we accomplish this with the use of quadrupoles 
anged in a FODO lattice. 

11.1
Figure 11.2  Oscillatory motion due to strong focusing by a FODO lattice. 
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In the above figure the motion of a particle is now periodic due to the placement of 
quadrupoles amongst the dipoles that keep the particle within the circumference.  As with 
anything that is periodic, it can be compared with the solution for a simple harmonic 
oscillator. 

( ) ( )[ ]δ+Ψ= sAsx cos
 
 
where A is the amplitude, Ψ(s) is the phase of the particle oscillation, and δ is the phase 
shift.  After some manipulation via matrix applications the general form for the equation 
of motion of a particle traversing a FODO lattice is 

( ) ( ) ( )[ ]δβ +Ψ= ssAsx cos
 
where β(s) is the amplitude function.  The amplitude function is interpreted as the local 
wavelength of the oscillation divided by 2π.  This function has units of length and is 
often quite a large value, on the order of meters, while the actual particle deviation from 
the ideal orbit is rather small. 
 
The number of oscillations the β function goes through in one revolution of the 
accelerator is called the tune, ν. 
 
Gaussian Distribution and Luminosity 
 
In particle physics a colliding beams experiment has a great advantage over a fixed-target 
experiment due to the center-of-mass energy attainable for the creation of new particles. 
 
Diagram of FT and colliding beam CMS 
 
In fixed-target the center-of-mass energy available for new secondary particle creation 
goes as the square root of the initial proton’s energy, E½.  As the proton’s energy is 
increased the gain in the secondary particles energy is small.  However, in the colliding 
beam center-of-mass frame the proton and antiproton annihilate upon collision and give 
their total energy to the creation of new particles.  So for a 980 GeV beam of protons and 
antiprotons the total available energy for new secondaries is 1.96 TeV. 
 
There are disadvantages, too, in colliding two beams.  The particles must be stable, 
although a muon collider has been considered due to the “long” lifetime of that particle.  
In the fixed-target experiments the proton collision rate with the target is high, whereas in 
the colliding beam experiment the collision rate is low. 
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Figure 11.3 Gaussian shape of the beam.  The majority of protons/pbars reside at the correct energy
and position.  Some particles have higher/lower momentum and position.  The vertical axis is the 
number of particles 
e two beams as they are counter rotating in the accelerator ring have a Gaussian shape, 
pefully.  Refer to the picture above.  Each particle has a probability of interacting with 
other particle traveling in the opposite direction.  This is known as the interaction 
ss-section, σint.  The rate of interaction within a detector is given by 

LR intσ=

ere L is the luminosity.  So what is luminosity?  Lets define that now.  The luminosity 
a measure of how the particles in both bunches are interacting with each other.  It is 
pendent upon the revolution frequency and the area that the beam occupies. 

A
NfnN

L pp=

ere Np and Npbar are the number of particles in each bunch, f is the revolution 
quency, n is the number of bunches in either beam, and A is the cross-sectional area of 
 beams.  Since the antiproton bunches and proton bunches can have different cross-
tional areas, A can be defined in terms of the width of the Gaussian shape, σp and 

bar.  The luminosity in the Tevatron is defined as 
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ere f, n, Np, and Npbar are the same as defined above.  The denominator contains σp and 
bar, which is the standard deviation of the beam spacially at the interaction point in the 
tector.  This is just a measure of the width for the bunch.  F(σl/β*) is a form factor (a 
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percentage) dependent upon the bunch length, σl, and the beta function at the interaction 
point, β*.  Referring to the table below, in Run II β* is 35 cm and σl is 0.37m.  
 

 RUN IB RUN II with MI RUN II with MI + 
Recycler 

 

Protons/bunch 2.32E+11 2.70E+11 2.70E+11  
Antiprotons/bunch 5.50E+10 3.00E+10 7.00E+10  
Total antiprotons 3.30E+11 1.30E+12 2.50E+12  
Pbar production rate 6.00E+10 1.70E+11 2.00E+11 pbars/hr 
Proton emittance 23π 20π 20π mm-mr 
Antiproton emittance 13π 15π 15π mm-mr 
 β* 0.35 0.35 0.35 mm-mr 
Energy 900 1000 1000 GeV 
Bunches 6 36 36  
Bunch length (rms) 0.6 0.43 0.38 mm-mr 
Form Factor 0.59 0.7 0.7  
Typical Luminosity 1.60E+31 8.10E+31 2.00E+32 cm-2sec-1 
Integrated Luminosity 3.2 16.3 41 pb-1/week 
Bunch spacing 3500 396 396 nsec 
Interactions/crossing 2.7 2.3 5.8 at 50 mb 
Pbar tune shift  0.015 0.02 0.02 Horizontally
Proton tune shift  0.006 0.003 0.007 Horizontally

 
 
A high luminosity is what Operations strives for because it will yield a large interaction 
rate.  By looking at the Luminosity equation above it can be seen that the luminosity 
increases as the intensity per bunch increases.  Also, if the bunch cross-sectional area 
decreases then the luminosity increases.  The average luminosity in Run Ib was 1.6x1031 
cm-2sec-1.  The luminosity goal for Run II is 5x1032 cm-2sec-1.  This will be achieved due 
to the larger Np from the Main Injector and an increased Npbar from the Recycler. 
 
The performance of a collider is determined by the integrating the luminosity over time.  
This yields units of cross section, which are units of barns (1 b = 10-24 cm2). 
 
Emittance 
 
We are at a point where the topic of emittance can be discussed.  As stated in the β 
function section, the solution to periodic motion through a FODO lattice is 
 

( ) ( ) ( )[ ]δβ +Ψ= ssAsx cos
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By taking the derivative of the above equation, x’(s), and plotting its value against x(s) 
we obtain a phase space diagram. 
 

 Figure 11.4  The left figure shows the phase space diagram of a stable orbit.  The right side figure shows 
the rotation of the ellipse throughout the accelerator.  Notice the area of the ellipse is unchanged. 
 
At any point in the accelerator, the maximum value of x is Aβ1/2.  The area of the phase 
space remains the same but the ellipse rotates with respect to the position in the ring.  The 
phase space occupied by the beam is called the emittance, ε.  If all the particles were on 
the ideal orbit then the emittance would be zero because all of the particles would reside 
at one point on the phase space diagram.  If the particles in the beam have a Gaussian 
distribution then the emittance is 
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where σ is the width of the Gaussian defined earlier in this chapter.  The above equation 
gives the phase space that contains 95% of the beam.  The units associated with emittance 
are mm-mr (mr = milliradians). 

   
 

 

Figure 11.5  Phase space and its relation to the
beam within. 
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RF Theory 
 
The previous section dealt with the motion in the transverse plane.  Now the equations of 
motion in the longitudinal direction will be developed. 
 
The progress of a particle through an accelerator can be charted via a phase space 
diagram of the longitudinal direction (z-axis).  Let τ be the time of flight of the ideal 
particle passing through an RF station in one turn. 
 

v
C

=τ  

where C is the circumference and v is the velocity of the particle.  The fractional change 
in τ is then 
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In relativistic terms 
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where p is the momentum and γ is 
( )2

1

1

c
v−

.  The first term in the fractional time 

equation also depends on the momentum deviation.  Of course, more than one particle is 
accelerated and statistically some will be slightly higher and lower in momentum which 
implies there will be various orbits about the ideal orbit.  A new parameter, γt, is 
introduced. 
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The value of γt is actually determined in the design of an accelerator.  For the Tevatron, γt 
is 18.  Thus the expression of the fractional change in τ is 
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The term 
τ
τ∆  is called the slip factor, η. 
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Now you can see that when γ=γt the sign of η transitions towards a positive number.  This 
occurs at the transition energy.  Luckily, for the TeV the beam injected is already above 
the transition energy.  The longitudinal equations of motion can now be constructed. 
 
Suppose a particle arrives at the nth accelerating station with the energy and phase En and 
φn.  At the entrance to the (n+1)th cavity the energy and phase are En+1 and φn+1. 
 

p
p∆

=
∆ η
τ
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The angular RF frequency, ωrf, multiplied by the time of flight yields 2πh, where h is the 
harmonic number of the TeV, 1113. 
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The above phase equation is one of our equations of motion in the longitudinal direction.  
The next equation deals with the energy of the ideal particle.  Every time the particle 
traverses the RF cavity it gains energy, 
 

( ) ( ) snsns eVEE φsin1 +=+  
 
where e is the charge of an electron, V is the amplitude of the emf across the cavity’s gap, 
and φs is the phase for arrival of the ideal particle, aka the synchronous phase.  For any 
particle on any orbit the energy gain as it traverses the cavity is 
 

nnn eVEE φsin1 +=+  
 
and so the change in energy between any particle and the ideal particle is 
 

( )snn eVEE φφ sinsin1 −+∆=∆ + . 
 
This is the second equation of motion.  These equations transcribe orbits on a phase plot, 
∆E vs. φ, which show where particles in a beam are on stable and unstable orbits. 
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Figure 11.6  Longitudinal phase space development.  Particles are injected into a stationary bucket (a) and as the beam is 
accelerated (b) the phase space of the bucket shrinks until finally (c) the beam reaches the destination energy of 980 GeV.
                                                                                                                                                                                                                 
The above equations form a second order differential equation. 
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From this equation the synchrotron frequency is found to be 
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s
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where c is the speed of light in a vacuum, C is the circumference of the TeV, and the other 
parameters have been previously defined.  Notice from the equation that as the energy 
increases the synchrotron oscillations decrease.  If we plug in the values for the TeV then we 
find 
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φs is π because the TeV is above transition. 
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